2025 IEEE International Conference on Data Mining (ICDM)

BLB—-HGNN: Bag of Little Bootstraps for Training
Heterogeneous GNNs

Aditya T. Vadlamani*, Sama Salarian*, Saket Gurukar'” and Srinivasan Parthasarathy*
*Department of Computer Science & Engineering, The Ohio State University, Columbus, Ohio, USA
TMicrosoft, Mountain View, CA, USA
{vadlamani.12, salarian.1}@osu.edu, saket.gurukar@gmail.com, srini@cse.ohio-state.edu

Abstract—Graphs can model complex relational data, which
makes them invaluable in numerous machine-learning applica-
tions. While the graph’s structure can be efficiently represented
and stored, the associated feature memory is substantial. The
feature memory can be terabytes or petabytes for web-scale
graphs, especially at companies like Pinterest and Google. The
extra feature memory can require external storage devices with
slower I/O times for data loading, making training even slower.
To address the storage issue with feature memory, we aim to
reduce the number of training nodes needed through sampling,
reducing the storage requirement. However, the problem is that
simply training a model with fewer nodes will result in worse
performance. To solve that problem, we propose BLB—HGNN,
a training algorithm based on the Bag of Little Bootstraps.
BLB-HGNN independently trains several replicas of the archi-
tecture on different subsamples of the data. For each training
epoch, our blb-sampler creates a bootstrap resampling of the
data for the replica to train on. The trained replicas are merged
using parameter averaging and then fine-tuned for inference.
We conduct experiments with the OGB_MAG and MAG240M
datasets to demonstrate the effectiveness of BLB—HGNN over
simple training. We also conduct experiments on the impact
of different sampling methods and model merging techniques.
With almost no additional runtime cost, BLB—HGNN consistently
provides a performance boost of up to 5% compared to stan-
dard training with the same training budget. Applying a non-
uniform sampling method, such as Personalized PageRank or
Spread Sampling, further improves performance. Furthermore,
BLB-HGNN can achieve performance close to full dataset training
with less than 50% of the training data on specific models. To our
knowledge, this is the first work addressing the storage problem
and uses Bag of Little Bootstraps for HGNN training.

Index Terms—Scalability, Graph Machine Learning, Bag of
Little Bootstraps

I. INTRODUCTION

Graphs, or networks, are ubiquitous for modeling rela-
tional data across many domains. Examples include social
networks [1], biological networks for modeling protein-protein
interactions [2], and nearest neighbor graphs in databases
[3]. To address graph-based learning tasks, Graph Neural
Networks (GNNs) have demonstrated great success in various
applications, such as recommender systems [4], [5], molecular
structure prediction [6], [7], and network anomaly detection
[8].

However, performing GNN training at large scales remains
a challenging problem. One of the key difficulties is that

“This work was done when the author was a student at The Ohio State
University.

2374-8486/25/$31.00 ©2025 IEEE
DOI 10.1109/ICDM65498.2025.00165

1555

standard GNN architectures, including GCN [9], GAT [10],
HetGNN [11], HGCN [12], and HGT [13], often struggle to
scale with large graph datasets. This is because they require
not only the entire graph, but also all node features, to be
available on a single machine, which can be highly storage-
intensive.

For instance, the MAG240M heterogeneous graph dataset
from OGB-LSC [14] requires over 200 GB of storage, with
175 GB dedicated to the node features of a single node type.
If node features for all node types are considered, the total
memory requirement for node features would double. For web-
scale graphs with billions of nodes, the storage requirement
can reach several terabytes or even petabytes, with node
features occupying a large portion of the total storage. To give
a concrete example, a version of Pinterest’s graph and features
requires more than 3 TB of space [15].

Such vast storage requirements are difficult to meet, both
for solving critical tasks and for benchmarking within the
field [14], [16], [17]. In industry settings with graphs contain-
ing over 100 billion nodes, a less storage-intensive training
approach is highly desirable. Existing research on scaling
GNN s to large graphs typically relies on expensive distributed
training or feature-hungry sampling techniques, both of which
still require full feature storage.

In this work, we take an orthogonal approach to training
on large graphs by reducing both the number of training
instances and the amount of feature storage required. This
approach is beneficial because it allows scaling to large graphs
whose features cannot be easily stored on a single device.
Additionally, it applies to heterogeneous graphs since the
training nodes consist of a single node type, allowing the GNN
to handle complexities related to node heterogeneity. Given
that real-world graphs are typically heterogeneous, we focus
on this setting.

Several challenges arise with this approach, including:

1) How do we efficiently sample the nodes required for

training?

2) How do we train the model on the sampled dataset

without sacrificing performance?

To address these challenges, we propose BLB—HGNN. For
the first challenge, we investigate the impact of various sam-
pling techniques, including Personalized PageRank [18] and
Spread Sampling [19]. To tackle the second challenge, we
introduce the use of Bag of Little Bootstraps (BLB) [20] for

Heterogeneous Graph Neural Networks (HGNNs). BLB is a
computationally efficient variation of the bootstrap method that
combines subsampling and bootstrapping techniques, making
it well-suited for parallel processing. BLB-HGNN applies
subsampling and resampling to the dataset to train multiple
models, which are then combined to generate a final model
for inference.

We empirically evaluate BLB—HGNN on two of the largest
publicly available heterogeneous graph datasets: MAG240M
and OGB_MAG. MAG240M consists of over 240 million
nodes and 1.7 billion edges. Storing the graph alone requires
approximately 25 GB, while the provided features take up
an additional 187 GB. If all node types are considered, the
feature memory increases to 375 GB. Further inclusion of em-
beddings, such as those from metapath2vec [21] or ComplEx
[22], can increase the total feature memory to 244M - [- b,
where [is the embedding dimension and b is the number of
bytes per data type. For example, if the metapath2vec features
are 128-dimensional float16 vectors, the total feature memory
increases to 437.5 GB.

The key advantage of BLB-HGNN is that it allows control
over the fraction of the training set used. In our experiments
with MAG240M, using only 10% of the training data reduced
the total feature memory for training (including neighbor
features) by 75%.

Key Contributions: To summarize, our contributions are
as follows:

1) To our knowledge, this is the first work to address
the storage problem in training GNNs, and the first
to propose using Bag of Little Bootstraps and model
merging for heterogeneous GNN training.

We demonstrate that BLB-HGNN can improve perfor-
mance by up to 5% compared to simple training with
fewer nodes.

We show that parameter averaging with fine-tuning,
when applied to model merging, outperforms other well-
known ensemble techniques by over 10%.

We analyze the effects of different sampling methods
and find that non-uniform sampling techniques, such
as Personalized PageRank or Spread Sampling, can
improve performance by up to 2%.

2)

3)

4)

II. PRELIMINARIES

Definition II.1. A heterogeneous graph, G
(V,E,Tv,Tg, X, $,%,p), is a graph where V, E, Ty, Tk
are the sets of nodes, edges, node types, and edge types,
respectively. The functions ¢ : V — Ty and ¢ : E — Tg
map nodes and edges to node and edge types, respectively.
Nodes can have features, where the features are elements of a
feature space X. The function ¢ maps a node to its features.

A. Graph Sampling

When working with large graphs and limited resources, it
is often desirable to sample a representative set of nodes. Se-
lecting nodes based on “importance” (e.g., using betweenness
centrality) can be computationally expensive, so efficient node

1556

sampling methods are crucial. Two popular sampling methods
are Personalized PageRank and Spread Sampling.

1) Personalized PageRank: Given a graph G with |V|
nodes, let D be its degree matrix and A be its adjacency
matrix. The standard PageRank is the unique solution to the
equation:

Pr(dvﬁ) = (1 - d) ﬁ+ d 'pr(dva_lAa

where d is the damping factor and p' = [ﬁ7 cee ﬁ} €
RIVI represents a uniform distribution over the nodes. j is
referred to as the personalization vector.

Personalized PageRank generalizes this by allowing p’ to
represent a non-uniform distribution over the nodes. It is a
random walk-based method where the final sampling depends
more on the initial choice of seed nodes, making it a "local”
sampling technique.

2) Spread Sampling: Spread Sampling emphasizes diver-
sity among the sampled nodes in terms of community repre-
sentation [19]. The method is guided by two hyperparameters:
the infection rate and the removal threshold.

Given a set of candidate nodes C, the infection rate deter-
mines a node’s affinity for being sampled. After some nodes
are sampled, the set C is filtered based on how many of a
node’s neighbors have already been sampled. The filtering uses
the removal threshold as a criterion.

With these two parameters, Spread Sampling provides two
benefits:

¢ A near-uniform sampling of nodes,
e A more spread-out set of sampled nodes that aims to
capture the global structure of the graph.

Spread Sampling is a “global” sampling method, designed
to sample nodes from across modular communities within a
graph.

B. Bag of Little Bootstraps

Bag of Little Bootstraps (BLB) is a computationally ef-
ficient variant of the Bootstrap that combines features of
subsampling and resampling. BLB performs bootstrapping on
smaller subsamples of the data and averages the results to get
a final estimate.

Formally, let D = {Xi,...,X,} be a dataset drawn
from an underlying distribution P. We subsample s subsets
uniformly at random, Sy,...,Ss; C D, where |S;| = b < n.
Let Pr(fl)) be the empirical distribution for S;. The goal is to
compute some metric £ (e.g., confidence interval or standard
error) on the distribution of our estimator, denoted as Q,,(P).

BLB estimates £(Q.,(P)) by averaging over the subsamples:

E@u(P) = = Y E@u(PL),

where each & (Qn(PT%)) is computed numerically using the
bootstrap. For each S;, we resample n points r times, giving us
S;; for j =1,...,r. Averaging across the resamples provides

an empirical distribution @, ;, from which we approximate
(4) '
E(Qu(PD)).
This method reduces storage costs because for each Sij,
there are at most b distinct points, with b < n, allowing
significant memory savings.

C. Model Merging

A key step in the Bag of Little Bootstraps methodology is to
average the estimates from the different subsamples. Extending
this averaging process to models results in model merging.
Model merging integrates the parameters or predictions of
multiple models into a single model or prediction.

A classical example of this paradigm is ensemble learning,
which combines the predictions of several weaker models to
produce a more robust prediction. However, ensemble learning
methods (e.g., bagging [23]) typically require multiple models
for inference, leading to increased memory usage. In cases
where there are many classes, voting-based approaches may
need a large number of weak models to guarantee a majority
vote, further inflating memory costs.

A popular model merging technique in computer vision
(CV) and natural language processing (NLP) is parameter
averaging, also known as model soups [24]-[28]. Using pa-
rameter averaging, we can (1) reduce the memory footprint
for inference, as the final model is a single instance, and (2)
allow for further fine-tuning after merging.

I[II. METHODOLOGY

In this section, we address the two challenges outlined in
the introduction: graph sampling and training on the sampled
graph. First, we provide some intuition for our proposed algo-
rithm, BLB-HGNN, and then elaborate on the graph sampling
process.

A. Algorithm Intuition

BLB-HGNN is a training framework designed to make
graph neural networks (GNNs) more scalable and efficient,
particularly when dealing with large, complex graphs. It is
inspired by a statistical method called Bag of Little Bootstraps
(BLB) and adapts this concept to the world of GNNs. The
primary objective is to reduce memory and compute demands
without compromising model performance.

At a high level, BLB-HGNN changes the way we train
GNNs. Instead of training one large model on the entire
dataset, it trains several smaller models, or replicas, on dif-
ferent subsets of a sampled portion of the graph. Each replica
is exposed to a slightly different version of the training data,
thanks to bootstrapping, enabling it to learn unique patterns.
After training all the replicas, their parameters are averaged to
form a single, stronger model. This final model is then fine-
tuned on the sampled data to enhance its predictions.

The framework grants control over how much data to use,
how many replicas to train, and how each replica’s training
data is chosen. Smart sampling strategies, such as Personalized
PageRank or Spread Sampling, help ensure that the training
data is a representative subset of the entire graph, which is

1557

particularly beneficial in large-scale settings. Since sampling
and training can occur independently across replicas, the whole
process is highly parallelizable, allowing for easy scaling.

Figure 1 illustrates an example of BLB-HGNN using half
the training data and three replicas.

In the next section, we delve deeper into the algorithm,
explaining how data is sampled, how the replicas are trained,
and how the final model is assembled.

2. Uniformly Sample data
for each moadel copy

..l..

3. Train copies of
any base model on
bootstrap samples
f the data

agin

4. Fine-tune parameter-
‘averaged model on
sampled dataset

Fig. 1. Example of the BLB-HGNN training pipeline. BLB-HGNN is model-
agnostic, meaning any underlying HGNN model can be used.

B. BLB-HGNN Algorithm

Algorithm 2 presents the BLB—HGNN algorithm. The frame-
work takes several key parameters: b € (0,1], the fraction
of training data to use (controlling the storage required for
training features); s € N, the number of model replicas to
be trained; and b, € (0,1], the fraction of the sampled
dataset used for training each replica. The role of s and by, in
BLB-HGNN mirrors the roles of s and b in the original BLB
algorithm. In BLB, s refers to the number of subsets sampled,
whereas in BLB-HGNN, s corresponds to the number of model
replicas, each trained on a subset of the data. Both b and by,
control the size of the data subsets in their respective contexts.
BLB-HGNN proceeds as follows:

1) Node Sampling: The algorithm begins by sampling
nodes from the training data, Dy, either uniformly
or with a sampling method such as PPR or Spread
Sampling. For larger graphs, this stage can be performed
a priori, since sampling only requires the graph structure.
The resulting sampled data is denoted as Dyin,, Where
we impose |Dyaing| = [0 X |Drrain] -

Model Initialization: Let Mg,..., M, represent s
copies of the model architecture. For each M;, the
train_replica method (lines 24-29) is invoked to
train the replica over r epochs. During each epoch,
the blb_sampler method (lines 31-37) generates a
bootstrap sample from Dy, -

Replica Training: The blb_sampler method per-
forms the following steps: In line 33, an RNG is seeded
to ensure the reproducibility of the sampling process.
In line 34, a subsample of the data is drawn for M;,
resulting in Dygin; = | brep X | Dirain | |- In €ach epoch (line

2)

3)

35), the RNG is reseeded to generate a new bootstrap
sample, and the replica is trained on that data in line 36
using mini-batch gradient descent.

4) Model Merging: Once all s replicas, My,..., M,
are trained, their parameters are averaged to create the
model Mgy = 1377 | M; (line 10).

5) Fine-tuning: The averaged model M, is then fine-
tuned on the sampled data Dy, for 7, epochs,
yielding the final model for inference (lines 18-22).

This process allows for efficient training and memory usage,
as multiple replicas are trained on different subsets of the data,
and the final model is obtained through model averaging and
fine-tuning.

Fig. 2. BLB-HGNN Algorithm
1: Illpllt! Dlrain - {miyyi}?:l, Dval = {muyi}?;nﬂ, Dlesl -
{mi»yi}§:m+1’ b, breP € (07 1]’ 8,7y Tavg € N.
: Output: Test Accuracy
: models = []
: D[raino <~ Sample(Dlmim b)
fori:=1...s5do
M; < model_init(¢)
train_replica(Myi, Duuing> Dvals %, T brep)
models.append (M)
9: end for
10: My ¢ avg_model_params(models)
11: train_ensemble(Moavg, Diaing> Dvals Tave)
12: Return compute_test_acc(Mayg, Drest)
13:
14: Function sample (D:yain,b)
15: Sample nodes from Dyin (see Section III-C)
16: Return Diin,
17:
18: Function train_ensemble (Mayg, Diraing, Dvar; Tavg)
19: for epoch = 1...7y do
20: train(Mavg, Dinaing)
21: validate(Mayg, Dval)
22: end for
23:
24: Function train_replica (M, Diraing, Dva1, %, 7y brep)
25: for epoch =1...r do
26: Dy < blb_sampler(Dyaing, ¢, epoch, brep)
27: train(M;, Do)
28: validate(M;, Dya)
29: end for
30:
31: Function blb_sampler (Diraing, %, epoch, brep)
32: n < $ize(Diaing)
33: seed(?)
34: Dyain; < subsample(Disaing ; [X brep |)
35: seed(z + epoch)
36: Do < resample(Digain, , 1)
37: Return Dy,

PRI RRN

C. Sampling Methods

For BLB-HGNN, we explored two node sampling methods:
Personalized PageRank and Spread Sampling, which approach
node selection from different perspectives (local vs. global).
Additionally, we examined a mixed variant—PPR-SS—which
combines both local and global perspectives to investigate the
impact of using both strategies together.

1) Spread Sampling: We implement the Spread Sampling
algorithm as outlined in [19], treating the input graph as
homogeneous. In this method, our candidate set, C, is the
set of all training nodes, and the target sample size is
|b X |Dyain| |, where b is the fraction of data we wish to
sample. The resulting reduced training set is denoted as Dirgin,, -
For hyperparameters, we select a low infection rate (0.1) and
a low removal threshold (1), which leads to more neighbor
removals, thereby providing better coverage of the graph’s
community structure. To handle large graphs and candidate
sets efficiently, we parallelized the algorithm using the Ray
framework [29].

2) Personalized PageRank: In Personalized PageRank
(PPR), random walks are performed with a restart probability
of 0.15 from a set of seed nodes, S. For each walk, we track
the visited nodes, ensuring that we record nodes of each type.
The collection of all visited nodes for a given seed node forms
its neighborhood, N,, which includes the seed itself. The
sampled training set is then defined as Diwin, = Usz es/\/sn
which is the union of all neighborhoods of the seed nodes.

3) PPR-SS: In the PPR approach, the default is to sample
seed nodes uniformly from the training data. However, in the
PPR-SS variant, we enhance this by using Spread Sampling to
select seed nodes that are more spread out across the graph.
This mixed approach combines the strengths of both local
(PPR) and global (Spread Sampling) sampling strategies.

D. Memory and Runtime Analysis

Memory: The BLB-HGNN framework reduces the number
of training nodes by a factor of b, which directly impacts
the memory requirements. Let the node embeddings be N-
dimensional and stored using k-byte floats. By sampling a
fraction b of the training nodes, the memory needed for
training node features decreases by (1 —b) - N - k bytes.

Further memory savings are possible when BLB-HGNN is
applied to an existing heterogeneous GNN that precomputes
node neighborhoods. In such cases, neighbor sampling is not
performed on the fly, reducing the number of features that
need to be stored. For methods that perform neighbor sampling
dynamically, the entire feature set may need to be available
during training.

Figures 3 and 4 illustrate how the average feature mem-
ory required for storage decreases when BLB-HGNN is ap-
plied to the MultiBiSage model [15] on the MAG240M and
OGB_MAG datasets. This is compared to the total memory
required by the baseline MultiBiSage model, where b = 1
(i.e., no data reduction). Additionally, because BLB-HGNN
trains smaller models independently and then merges them,
there are further opportunities for compression on the indi-
vidual replicas or the final model. To further reduce memory
requirements,techniques such as quantization-aware training
or structured pruning, though beyond the scope of this work,
could be applied.

Runtime: BLB-HGNN is embarrassingly parallel, as the
s individual model replicas can be trained independently
on separate machines before the fine-tuning and inference

1558

[[=2)
o (=]

Avg. Feature Mem. in GB
Do
S

1 09080.706 0504 03020.1

b

Fig. 3. Avg. Feature Memory for training MAG240M

—

o
o

&
=N

f=1

Avg. Feature Mem. in GB
S

<
o

o

1 09080706 050403 0.20.1
b

Fig. 4. Avg. Feature Memory for training OGB_MAG

phases. This parallelization can be further scaled using other
techniques, such as Data and Model Parallelism.

For a fixed value of b, if we train the s model replicas
independently for r epochs and fine-tune for r,,, epochs, then
BLB-HGNN is b - (1
on the full dataset tor ry epochs. In our experiments, we set
Tavg = T = %, so for b < 1, we observe both runtime and
memory benefits over training on the full dataset. If 7 +17,,, =
ro, then BLB—HGNN is as fast as simple training on b fraction
of the data, making it an efficient alternative.

) times faster than simple training

IV. EXPERIMENTS
A. Setup

1) Datasets: We perform experiments on two large
datasets: MAG240M [14] and OGB_MAG [16]. The
MAG?240M dataset is derived from the Microsoft Academic
Graph (MAG) [30] and is one of the largest publicly available
heterogeneous datasets. It is a heterogeneous graph with paper
author, and institution nodes, where the edges represent the
paper-cites-paper, author-writes-paper, and author-affiliated-
with-institution relations.

The OGB_MAG dataset shares the same node and edge
types as MAG240M, with an additional field-of-study node
type and a paper-with-field-of-study edge relation. Table I

1559

presents basic statistics for both datasets, including the number
of labeled nodes, |V |, available for supervised learning. The
task for both datasets is node classification.

For both datasets, only the paper node features are available.
For the other node types in OGB_MAG, we used the meta-
path2vec features provided by PyTorch Geometric [31]. For
MAG240M, we use the features from the DGL baseline [14]
and the metapath2vec features used in [32].

TABLE 1
SUMMARY STATISTICS FOR DATASETS

Dataset 4 VL |E|
MAG240M 244,160,499 1,398,159 1,728, 364,232
OGB_MAG 1,939,743 736,389 21,111,007

2) Models: BLB-HGNN is not tied to a particular model.
For our experiments, we consider two heterogeneous mod-
els: MultiBiSage [15] and SeHGNN [33]. MultiBiSage is a
heterogeneous GNN developed at Pinterest and is one of the
latest works to perform competitively on both industry and
academic graphs, outperforming other HGNN:Ss. It achieves this
by decomposing the heterogeneous graph into bipartite graphs
(graphs with a single edge type), which enables it to learn
more expressive representations. SSHGNN, on the other hand,
is an HGNN that performs competitively on the OGB_MAG
dataset, where it ranks highly on the leaderboard.

For our main experiments and ablation studies, we used
MultiBiSage as our primary model, while SeHGNN was used
to demonstrate the generalizability of our approach.

3) Technical Details: MultiBiSage is proprietary to Pin-
terest, with no official public implementation available. As
part of this work, we independently implemented MultiBiSage
from scratch by following the original paper, using PyTorch
Lightning [34]. ! Additionally, we developed an optimized
random walker using the Ray framework to compute node
neighborhoods. For each bipartite graph, random walks were
performed with a restart probability of p = 0.15 for up to
1000 restarts, and the 50 most common neighbors for each
node type were collected.

The model hyperparameters evaluated for each dataset in-
clude embedding dimension {128,256, 512}, number of heads
{2,4,8}, and number of layers {2,4}. The final model pa-
rameters for OGB_MAG were: embedding dimension = 256,
transformer heads = 8, transformer layers = 2, and dropout =
0.60. For MAG240M, the model parameters were: embedding
dimension = 512, transformer heads = 8, transformer layers
= 2, and dropout = 0.70. All models were trained using a
learning rate of 10™%, weight decay of 0.1, a batch size of
256, and the AdamW optimizer [35].

For the baseline experiments, the model was trained for 100
epochs. In the BLB experiments, training was split into 50
epochs for each model replica, followed by 50 epochs of fine-
tuning for the averaged model, ensuring a consistent training

'https://github.com/AdityaVadlamani/BLB-HGNN.

budget for comparison. Unless stated otherwise, we fixed s =
2 and brp = 0.5 and ran each experiment with three random
seeds.

Experiments with OGB_MAG were conducted on 2 A100
GPUs and 128 CPU cores, while experiments on MAG240M
were run on 2 RTX A6000 GPUs and 16 CPU cores.

B. Results

The reported performance is the average test micro-FI
score, with the standard deviation indicated in parentheses
(for tables) and depicted through shading (for figures). We
report micro-F1 due to its popularity in node classification
benchmarks like OGB(-LSC). For the MAG240M dataset,
we also report the test macro-F1 score (see Figure 7) to
demonstrate that the performance improvements are not solely
due to the choice of metric.

Since MAG240M is part of OGB-LSC, to ensure a fair
evaluation, the test set is hidden and cannot be self-evaluated.
Therefore, for experiments with the MAG240M dataset, we
modify the train/validation/test splits to be papers published
before 2018, during 2018, and during 2019, respectively.

1) Baselines: We establish the baseline for assessing
BLB-HGNN’s effectiveness by comparing it against training a
single model on the same reduced dataset, Diy,in,. We consider
values of b € {0.1,0.2,0.3,0.4,1.0}, where b controls the
fraction of the training set used. The primary focus is on the
regime where b < 0.5, as this reflects realistic constraints in
large-scale systems where both feature memory and training
runtime are limited. By operating in this low-resource regime,
we aim to demonstrate that BLB—HGNN can serve as a prac-
tical substitute for standard training, achieving comparable or
better performance with significantly fewer resources. For each
setting, Dinain, 1S sampled uniformly from the original Dyin,
and training is performed using Data Parallelism.

2) Summary: Figures 5 and 6 illustrate the average baseline
performance and the best results using BLB—HGNN from
the other experiments for both datasets. For both datasets,
we observe that BLB-HGNN consistently outperforms simple
training on the same amount of training data, with improve-
ments reaching up to 5%. Additionally, when using less than
50% of the training nodes, BLB—HGNN achieves results within
1% — 2% of simple training using the full dataset.

Figure 8 and 9 show the training time for BLB—HGNN versus
the baseline model for the fixed training budget of 100 epochs.
We observe that the training time of BLB—HGNN is comparable
to the baseline, so there is no additional cost in terms of
training time with our method.

C. Ablation Study

1) Parameter Analysis: BLB—HGNN has two main hyper-
parameters: (1) the number of subsets/model replicas, s, and
(2) the fraction of Dyyin, to train a particular model replica on,
brep. We perform three experiments to analyze these parameters
for varying values of b.

In the first experiment, we set s € {2, 3,4} and let by, =
1/s. Tables II and III show that a greater value of s, i.e., having

1560

—=&— BLB-HGNN(MB) —e— MultiBiSage

45

40+

354

Best Test Micro-F1

A

304

T
0.1 0.2 0.3 0.4 1.0

Fig. 5. MultiBiSage vs Best BLB-HGNN performance on OGB_MAG with
the same amount of training data (MultiBiSage - MB).

—e— BLB-HGNN(MB) —e— MultiBiSage

65

60

Best Test Micro-F1

)

55+

o
-
o
o
.
w
=]
S

b

Fig. 6. MultiBiSage vs Best BLB-HGNN performance on MAG240M with
the same amount of training data (MultiBiSage - MB).

—=— BLB-HGNN(MB) —e— MultiBiSage

50+
45

40

Best Test Macro-F1

R

359

=]
-
=]
~n
=]
w
(=]
-

b

Fig. 7. MultiBiSage vs BLB-HGNN on MAG240M macro-F1 performance
with the same amount of training data (MultiBiSage - MB)

—e— BLB-HGNN(MB) —e— MultiBiSage

Training Time (hours)

\

0.1 0.2 0.3 0.4

=}

b

Fig. 8. Training time of MultiBiSage vs Best BLB-HGNN on OGB_MAG in
hours (MultiBiSage - MB)

—e— BLB-HGNN(MB) —e— MultiBiSage

25

20+

154

Training Time (hours)

104

T T T
01 0.2 03 04 1.0

Fig. 9. Training time of MultiBiSage vs Best BLB-HGNN on MAG240M in
hours (MultiBiSage - MB)

more models trained and then merged, doesn’t necessarily
imply a better final performance. We observe that only 2
replicas are enough to see the performance improvements. This
observation holds for both MAG240M and OGB_MAG.

The second experiment has the same setup as the previous
one; however, we assert the extra condition that model replicas
are trained on distinct data, i.e., the Dy,in, form a partition
Of Dipin,. Table III shows that, like the original Bag of
Little Bootstraps, we can choose whether the subsamples
overlap or form a partition without sacrificing performance.
This partitioned setup also aligns with federated or cross-
device learning scenarios, where data privacy or storage con-
straints limit access to full datasets. The ability to train non-
overlapping replicas and successfully merge them into a strong
global model positions BLB-HGNN as a promising approach
for federated HGNN training.

In the third experiment, we set s € {3,4} and let by, =
0.5 > 1/s. Table IV shows that a larger b, improves
performance. This is because a larger by, forces each model
replica to see more unique data points, strengthening that
replica before the model merging process.

In all three experiments, BLB-HGNN provides a perfor-
mance improvement of up to 5% over the baselines.

TABLE II
IMPACT OF SUBSAMPLING FRACTION OF Drrain (b) AND REPLICA COUNTS
(s) WITH SUBSAMPLING FRACTION PER TRAINING REPLICA (brgp) SET TO
1/s ON MAG240M (MULTIBISAGE)

B\s | 2 3 4

0.1 | 59.22(+£0.21) 57.52(+£1.58) 56.97(+1.24)
0.2 | 60.58(+£0.49) 60.29(+£1.34) 59.47(+0.94)
0.3 | 61.57(+£0.32) 62.40(+0.31) 61.55(£0.16)
0.4 | 63.53(£0.56) 62.82(+0.89) 62.36(£0.63)
1.0 | 66.33(+£0.23) 66.04(+0.19) 65.44(+£0.22)

2) Model Merging: In Table V, we compare different
methods — parameter averaging, parameter averaging with fine-
tuning, logit averaging, and majority voting — for merging and
ensembling the s trained model replicas in BLB—-HGNN for
both the OGB_MAG and MAG240M datasets. We observe

1561

TABLE III
IMPACT OF OVERLAPPING TRAINING DATA ACROSS VARYING
SUBSAMPLING FRACTION OF Drramn (b) AND REPLICA COUNTS (s) WITH
SUBSAMPLING FRACTION PER TRAINING REPLICA (bggp) SET TO 1/5 ON

OGB_MAG (MULTIBISAGE)

s=2
b\ | Overlap No Overlap
0.1 | 33.19(+£0.50) 33.55(+0.71)
0.2 | 36.72(+£0.16) 37.67(+0.68)
0.3 | 38.86(+0.27) 37.95(+0.46)
0.4 | 40.15(+£0.70) 40.20(£0.34)
1.0 | 44.93(+£0.28) 44.62(£0.72)

s=3
b\ | Overlap No Overlap
0.1 | 32.78(+£0.32) 32.79(+0.91)
0.2 | 36.71(+£0.62) 36.62(+1.15)
0.3 | 38.70(+0.49) 38.48(+0.21)
0.4 | 39.43(+0.65) 39.14(+0.30)
1.0 | 43.56(£0.07) 44.48(+0.65)

s=4
b\ | Overlap No Overlap
0.1 32.29(+0.77) 32.91(+0.63)
0.2 | 36.95(£0.74) 36.68(0.30)
0.3 | 38.08(+0.36) 38.00(40.26)
0.4 | 39.18(+£0.38) 39.32(£1.13)
1.0 | 43.30(+£0.55) 43.10(+0.41)

TABLE IV

IMPACT OF SUBSAMPLING FRACTION OF Drgain (b) AND REPLICA COUNTS
(s) WITH A FIXED SUBSAMPLING FRACTION PER TRAINING REPLICA
(brep = 1/2) ON OGB_MAG. (MULTIBISAGE)

s=3
b\brep ‘ 1/s 0.50
0.1 32.78(40.32) 32.85(+1.18)
0.2 36.71(4+0.62) 37.12(+0.31)
0.3 38.70(+0.49) 38.33(£0.67)
0.4 39.43(+0.65) 40.22(+0.79)
1.0 43.56(10.07) 44.36(+0.60)
s=4
b\brep ‘ 1/s 0.50
0.1 32.29(40.77) 32.76(+0.71)
0.2 36.95(1+0.74) 36.65(+0.76)
0.3 38.08(+0.36) 38.27(+0.90)
0.4 39.18(+0.38) 39.38(+0.66)
1.0 43.30(10.55) 44.40(+0.22)

that BLB-HGNN’s default of averaging parameters and fine-
tuning significantly outperforms the other methods by at least
7% with similar or smaller deviation for all datasets and values
of b. In some cases, the improvements are between 10% to
20%.

3) Sampling Methods: In Table VI, we compare several
sampling strategies for constructing Dyin, on the OGB_MAG
dataset. Beyond uniform sampling, we evaluate: (1) Personal-
ized PageRank (PPR) with uniformly sampled seed nodes, (2)
Spread Sampling, and (3) PPR with seed nodes selected via

TABLE V
EFFECT OF MODEL MERGING METHODS (MULTIBISAGE)

OGB_MAG

Avg Params
w/ fine-tuning

Avg Params

Majority Voting

Avg Logits

33.19(+0.50)
36.72(+0.16)
38.86(0.27)
40.15(+0.70)

20.26(+4.46)
19.03(+4.60)
22.16(+4.15)
17.41(+1.68)

21.05(+0.62
26.29(+0.08

26.30(+0.43

23.33(£0.46)
29.39(0.20)
30.99(£0.34)
29.60(£0.66)

MAG240M
Avg Params Ave Params Maiority Vot Ave Logits
w/ fine-tuning vg Params ajority Voting vg Logits
0.1 | 59.22(+0.21) 23.60(+2.45) 36.77(10.89) 41.70(x1.15)
0.2 | 60.58(+0.49) 25.89(%12.66) 42.97(40.49) 47.59(%0.57)
0.3 | 61.57(+0.32) 24.42(+3.68) 44.85(+1.40) 49.19(+1.36)
0.4 | 63.53(+0.56) 22.41(+1.44) 47.34(+0.72) 51.91(40.63)
1.0 | 66.33(+0.23) 11.78(+4.15) 54.06(40.46) 58.52(40.96)

44.93(+0.28)

15.62(+4.34)

33.66(+0.50

)
27‘89(i0.54;
)
)

36.90(+£0.23)

Spread Sampling (PPR-SS). For PPR, we reuse the random
walks employed by MultiBiSage.

Our results show that all non-uniform sampling methods
outperform uniform sampling, with gains of up to 2%. Notably,
these advanced sampling techniques are highly parallelizable
and can be efficiently precomputed in distributed environments
and stored for reuse. The results suggest that the non-uniform
sampling may act as a form of implicit regularization. By
selecting more structurally diverse or semantically meaningful
subsets, techniques like Spread Sampling may steer the train-
ing toward flatter minima, which can generalize better, even
under storage constraints.

An important observation is that these methods allow the use
of smaller b values while still achieving better performance
than uniform sampling with larger b. For instance, Spread
Sampling with b = 0.3 outperforms uniform sampling at
b = 0.4. Interestingly, the hybrid PPR-SS method consistently
performs between PPR and Spread Sampling, suggesting po-
tential as a balanced strategy. Further tuning and analysis of
PPR-SS is left as future work.

These advanced sampling techniques exploit the graph’s
topology to select more informative and representative training
nodes. As shown in Table VI, Spread Sampling tends to be
more effective on large graphs by promoting broad coverage
and capturing nodes from diverse communities. In contrast,
PPR often excels on smaller graphs, where random walks can
traverse the entire structure, yielding a meaningful set of seed
nodes with fewer constraints, more easily.

Given our observation that specialized sampling can im-
prove the performance of BLB—HGNN, an interesting direction
for future work is the development of adaptive sampling
strategies. Integrating such approaches could further enhance
the performance gains seen with BLB-HGNN and allow it to
sample more informative nodes throughout training.

D. Generalizability

To demonstrate the generalizability of our method, we
applied BLB-HGNN to SeHGNN. We modified the code shared
on the OGB_MAG leaderboard to train with BLB—HGNN. We
ran the original version for 100 epochs and our modified
version with a 50/50 split for the replica training and fine-
tuning. We used all the default parameters and a single stage
of training. Table VII shows that BLB-HGNN matches or
improves the baseline performance.

1562

TABLE VI
EFFECT OF SAMPLING METHODS ON OGB_MAG (MULTIBISAGE)

Uniform PPR
0.1 33.19(£0.50) 34.34(£0.18)
0.2 36.72(£0.16) 38.30(£0.25)
0.3 38.86(+0.27) 39.55(£0.97)
0.4 40.15(+0.66) 41.14(£0.33)

PPR-SS Spread

Sampling
0.1 33.48(%0.97) 33.38(10.06)
0.2 37.95(10.58) 37.94(10.59)
0.3 40.00(£0.25) 40.38(+0.29)
0.4 41.44(£0.77) 41.50(£0.48)
TABLE VII

SEHGNN VS BLB-HGNN WITH THE SAME AMOUNT OF TRAINING DATA
ON OGB_MAG (SEHGNN - SE)

SeHGNN BLB-HGNN (Se) Change
0.1 43.81(40.05) 43.39(40.09) -0.42%
0.2 46.40(£0.53) 46.31(+0.29) -0.07%
0.3 47.26(40.32) 47.84(+0.15) +0.58%
0.4 48.36(40.01) 48.81(40.25) +0.45%
0.5 49.16(40.44) 49.50(10.43) +0.34%
0.6 49.70(40.23) 50.45(10.12) +0.75%
1.0 51.03(+0.15) 51.73(%0.06) +0.70%

V. RELATED WORK

1) Heterogeneous Graph Mining: Real-world data fre-
quently appears as heterogeneous graphs containing various
types of nodes and edges along with different unstructured
contents, e.g., images and text. Numerous models have been
developed to extract information from heterogeneous graphs.
HGT is proposed for web-scale heterogeneous graphs, which
utilize meta-relations and incorporate relative temporal en-
coding to capture dynamic dependencies. HAN [36] captures
node-level and semantic-level importance by a hierarchical
attention mechanism. These models facilitate machine learning
tasks, including personalized recommendation, node classifi-
cation, and link prediction. However, they require the entire
graph and all associated features to be available on a single
machine, making them storage-intensive.

2) Random Walk Based Heterogeneous GNNs: One ef-
fective strategy to reduce feature memory during training is
precomputing node neighborhoods and caching the relevant
features. Unlike many HGNNSs that rely on on-the-fly sampling
[2], [37], random walk-based methods allow for offline neigh-
borhood construction, improving efficiency and scalability.
These methods treat frequently visited nodes in a random
walk as neighbors and prefetch their features for training.
Notable examples include MultiBiSage, HetGNN, and RAW-
GNN [38], demonstrating strong performance on large-scale
heterogeneous graphs using this paradigm.

3) Model Merging: Model merging is employed across sev-
eral applications to improve the performance and robustness
of ML models. The Branch-Train-Merge [25] algorithm trains
LLMs by avoiding multi-node synchronization, using multiple
expert language models on distinct textual domains, and then
merging them for application to new domains. Model aver-
aging approaches for Stochastic Gradient Descent and Latent
Dirichlet Allocation have been proposed to enhance Spark’s
MLIib by having each worker node independently update its
local model, which is then aggregated by averaging at a cen-
tral node, reducing communication overhead and improving
convergence speed [39]. Adaptive Federated Averaging [40]
algorithm iteratively constructs average models from local
updates and identifies unreliable clients by comparing the
similarity of the local models to the aggregated model.

4) Bootstrapping: Apart from BLB, other computationally
efficient variants include Subsampled Double Bootstrap [41]
and Distributed Bootstrap [42]. Previous applications of BLB
to machine learning have been towards random forests [43],
including BLB-gcForest [44].

5) Graph Coarsening: Graph coarsening aims to reduce
the size of a graph by merging nodes while preserving its
structural properties, thereby enabling more scalable GNN
training. Methods like MILE [45], HeteroMILE [46], Con-
vMatch [47] and MLC-GCN [48] recursively compress the
graph, perform learning on the coarsened version, and refine
embeddings for the original graph. While effective, these
approaches primarily alter the graph topology. BLB-HGNN
operates orthogonally by reducing training instances through
sampling, without modifying the graph structure, making it
particularly suitable for feature memory-constrained settings.

VI. CONCLUSION

We presented BLB—-HGNN, a novel training algorithm that
addresses the feature memory bottleneck in large-scale het-
erogeneous graph neural networks. By leveraging the Bag
of Little Bootstraps framework, BLB—HGNN enables scalable
training using only a subset of the data, while preserving or
improving model performance. Our method trains multiple
model replicas on resampled subsets, merges them through pa-
rameter averaging, and fine-tunes the merged model, achieving
a performance gain of up to 5% with the same data budget.

We demonstrated that BLB-HGNN is model-agnostic and
compatible with various sampling strategies, including Per-
sonalized PageRank and Spread Sampling, which further im-

1563

prove performance over uniform sampling. Additionally, our
experiments across multiple datasets and HGNN architectures
confirm that BLB-HGNN achieves competitive performance
with reduced training data and no additional runtime cost.

BLB-HGNN offers a practical alternative for training on
large graphs, particularly in storage-constrained settings. Fu-
ture directions include adaptive sampling, theoretical analysis,
and extensions to federated or decentralized training.

ACKNOWLEDGMENTS

The authors acknowledge support from National Science
Foundation (NSF) grants MRI OAC-2018627 and SES-
1949037, and the Ohio Supercomputing Center for experi-
mentation resources. We would also like to acknowledge the
Al-Edge Institute (NSF CNS-2112471). Any opinions and
findings are those of the author(s) and do not necessarily reflect
the views of the granting agencies.

REFERENCES

[1] Y. Gu, Y. Sun, and J. Gao, “The co-evolution model for social network
evolving and opinion migration,” In Proceedings of the 23rd ACM
SIGKDD international conference on knowledge discovery and data
mining, pp. 175-184, 2017.

'W. Hamilton, Z. Ying, and J. Lekovec, “Inductive representation learning
on large graphs,” In Advances in Neural Information Processing Systems,
pp. 1024-1034, 2017.

D. Eppstein, M. S. Paterson, and F. F. Yao, “On nearest-neighbor
graphs,” Discrete & Computational Geometry, vol. 17, no. 3, pp. 263—
282, 1997.

R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton,
and J. Leskovec, “Graph convolutional neural networks for web-
scale recommender systems,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, ser. KDD ’18. ACM, Jul 2018. [Online]. Available:
http://dx.doi.org/10.1145/3219819.3219890

A. Pfadler, H. Zhao, J. Wang, L. Wang, P. Huang, and D. L. Lee,
“Billion-scale recommendation with heterogeneous side information at
taobao,” in 2020 IEEE 36th International Conference on Data Engi-
neering (ICDE). Dallas, TX: IEEE, Apr. 2020, pp. 1667-1676.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proceedings of the
34th International Conference on Machine Learning - Volume 70, ser.
ICML’17. JMLR.org, 2017, p. 1263-1272.

Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S.
Pappu, K. Leswing, and V. S. Pande, “Moleculenet: A benchmark
for molecular machine learning,” CoRR, vol. abs/1703.00564, 2017.
[Online]. Available: http://arxiv.org/abs/1703.00564

D. K. Bhattacharyya and J. K. Kalita, Network anomaly detection: A
machine learning perspective. Chapman and Hall/CRC, 2013.

T. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” ICLR, 2017.

P. Veli¢kovié, G. Cucurull, A. Casanov, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention network,” ICLR, 2018.

C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla,
“Heterogeneous graph neural network,” in Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, ser. KDD ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 793-803. [Online]. Available:
https://doi.org/10.1145/3292500.3330961

Z. Zhu, X. Fan, X. Chu, and J. Bi, “Hgcn: Heterogeneous graph
convolutional network-based deep learning model toward collective
classification,” Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 1161-1171,
2020.

Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous graph trans-
former,” The Web Conference, pp. 2704-2710, 2020.

W. Hu, M. Fey, H. Ren, M. Nakata, Y. Dong, and J. Leskovec, “Ogb-Isc:
A large-scale challenge for machine learning on graphs,” arXiv preprint
arXiv:2103.09430, 2021.

[2]

[3]

[6

—

[7]

[8]
9

—

[10]

[11]

[12]

[13]

[14]

[15]

(19]

[20]

(21]

(23]

[24]

S. Gurukar, N. Pancha, A. Zhai, S. Kim, E. Hu, S. Parthasarathy,
C. Rosenberg, and J. Leskovec, “Multibisage: A web-scale recommen-
dation system using multiple bipartite graphs at pinterest,” Proceedings
of the VLDB Endowment, vol. 16, no. 4, pp. 781-789, Dec. 2022.

W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning on
graphs,” arXiv preprint arXiv:2005.00687, 2020.

A. Khatua, V. S. Mailthody, B. Taleka, T. Ma, X. Song, and W.-m.
Hwu, “Igb: Addressing the gaps in labeling, features, heterogeneity,
and size of public graph datasets for deep learning research,” in In
Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD ’23), ser. KDD ’23, 2023. [Online].
Available: https://arxiv.org/abs/2302.13522

R. Andersen, K. Lang, and F. Chung, “Local graph partitioning
using pagerank vectors,” in 2006 47th Annual IEEE Conference
on Foundations of Computer Science. Los Alamitos, CA, USA:
IEEE Computer Society, oct 2006, pp. 475-486. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/FOCS.2006.44

Y. Wang, B. Bandyopadhyay, V. Patel, A. Chakrabarti, D. Sivakoff, and
S. Parthasarathy, “Spread sampling and its applications on graphs,” in
Complex Networks and Their Applications VIII, H. Cherifi, S. Gaito, J. F.
Mendes, E. Moro, and L. M. Rocha, Eds. Cham: Springer International
Publishing, 2020, pp. 128-140.

A. Kleiner, A. Talwalker, P. Sarkar, and M. I. Jordan, “The big data
bootstrap,” 2012.

Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable
representation learning for heterogeneous networks,” KDD, 2017.

T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, and G. Bouchard,
“Complex embeddings for simple link prediction,” in Proceedings of the
33rd International Conference on International Conference on Machine
Learning - Volume 48, ser. ICML’16. JMLR.org, 2016, p. 2071-2080.
L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp.
123-140, 1996.

M. Wortsman, G. Ilharco, S. Y. Gadre, R. Roelofs, R. Gontijo-Lopes,
A. S. Morcos, H. Namkoong, A. Farhadi, Y. Carmon, S. Kornblith, and
L. Schmidt, “Model soups: averaging weights of multiple fine-tuned
models improves accuracy without increasing inference time,” 2022.
M. Li, S. Gururangan, T. Dettmers, M. Lewis, T. Althoff, N. A. Smith,
and L. Zettlemoyer, “Branch-train-merge: Embarrassingly parallel train-
ing of expert language models,” 2022.

S. Sanyal, A. Neerkaje, J. Kaddour, A. Kumar, and S. Sanghavi, “Early
weight averaging meets high learning rates for llm pre-training,” 2023.
P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G. Wilson,
“Averaging weights leads to wider optima and better generalization,”
2019.

A. Ramé, N. Vieillard, L. Hussenot, R. Dadashi, G. Cideron, O. Bachem,
and J. Ferret, “Warm: On the benefits of weight averaged reward
models,” 2024.

P. Moritz, R. Nishihara, and et al., “Ray: A distributed framework for
emerging ai applications,” arXiv preprint arXiv:1712.05889, 2018.

K. Wang, Z. Shen, C. Huang, C.-H. Wu, Y. Dong, and A. Kanakia,
“Microsoft Academic Graph: When experts are not enough,”
Quantitative Science Studies, vol. 1, no. 1, pp. 396-413, 02
2020. [Online]. Available: https://doi.org/10.1162/qss_a_00021

M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” arXiv preprint arXiv:1903.02428, 2019.

Y. Shi, P. Team, Z. Huang, W. Li, W. Su, and S. Feng, “Runimp:
Solution for kddcup 2021 mag240m-lsc.” 2021. [Online]. Available:
https://ogb.stanford.edu/paper/kddcup2021/mag240m_BD-PGL.pdf

X. Yang, M. Yan, S. Pan, X. Ye, and D. Fan, “Simple and
efficient heterogeneous graph neural network,” in Proceedings of
the Thirty-Seventh AAAI Conference on Artificial Intelligence, ser.
AAAT'23/IAAT'23/EAAT’23. AAAI Press, 2023. [Online]. Available:
https://doi.org/10.1609/aaai.v37i9.26283

W. Falcon and The PyTorch Lightning team, “PyTorch Lightning,” Mar.
2019. [Online]. Available: https://github.com/Lightning- Al/lightning

I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
ICLR, 2019.

X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu,
“Heterogeneous graph attention network,” in The World Wide Web
Conference, ser. WWW ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 2022-2032. [Online]. Available:
https://doi.org/10.1145/3308558.3313562

[37]

[38]

[39]

[40]
[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. K. Prasanna,
“Graphsaint: Graph sampling based inductive learning method,” in 8th
International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
[Online]. Available: https://openreview.net/forum?id=BJeSpkHFwS

D. Jin, R. Wang, M. Ge, D. He, X. Li, W. Lin, and W. Zhang, “Raw-gnn:
Random walk aggregation based graph neural network,” in Proceedings
of the Thirty-First International Joint Conference on Artificial
Intelligence, IICAI-22, L. D. Raedt, Ed. International Joint Conferences
on Artificial Intelligence Organization, 7 2022, pp. 2108-2114, main
Track. [Online]. Available: https://doi.org/10.24963/ijcai.2022/293

Y. Guo, Z. Zhang, J. Jiawei, W. Wu, C. Zhang, B. Cui, and J. Li,
“Model averaging in distributed machine learning: a case study with
apache spark,” The VLDB Journal, vol. 30, pp. 1-20, 07 2021.

L. Mufioz-Gonzédlez, K. T. Co, and E. C. Lupu, “Byzantine-robust
federated machine learning through adaptive model averaging,” 2019.
S. Sengupta, S. Volgushev, and X. Shao, “A subsampled double bootstrap
for massive data,” 2015.

Y. Yu, S.-K. Chao, and G. Cheng, “Simultaneous inference for massive
data: Distributed bootstrap,” 2020.

P. de Vifia and G. Martinez-Muioz, “Using bag-of-little bootstraps for
efficient ensemble learning,” in Artificial Neural Networks and Machine
Learning—ICANN 2018: 27th International Conference on Artificial
Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part
I27. Springer, 2018, pp. 538-545.

Z. Chen, T. Wang, H. Cai, S. K. Mondal, and J. P. Sahoo, “Blb-
gcforest: A high-performance distributed deep forest with adaptive sub-
forest splitting,” IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 11, pp. 3141-3152, 2022.

J. Liang, S. Gurukar, and S. Parthasarathy, “Mile: A multi-
level framework for scalable graph embedding,” in Proceedings
of the Fifteenth International AAAI Conference on Web and
Social Media (ICWSM). AAAI Press, 2021. [Online]. Available:
https://github.com/jiongqian/MILE

Y. Zhang, Y. He, S. Gurukar, and S. Parthasarathy, “Heteromile: a
multi-level graph representation learning framework for heterogeneous
graphs,” arXiv preprint arXiv:2404.00816, 2024.

C. Dickens, E. Huang, A. Reganti, J. Zhu, K. Subbian, and D. Koutra,
“Graph coarsening via convolution matching for scalable graph neural
network training,” in Companion Proceedings of the ACM Web
Conference 2024. ACM, 2024, pp. 1502-1511. [Online]. Available:
https://doi.org/10.1145/3589335.3651920

Y. Xie, C. Yao, M. Gong, C. Chen, and A. K. Qin, “Graph convolutional
networks with multi-level coarsening for graph classification,”
Knowledge-Based Systems, vol. 194, p. 105578, 2020. [Online].
Available: https://doi.org/10.1016/j.knosys.2020.105578

APPENDIX
SYMBOLS REFERENCE

We provide a full list of referenced symbols in Table VIII.

TABLE VIII
NOTATION OF THE BLB-HGNN ALGORITHM

Symbol

Description

Dtrain s Dval » Deest
b

Training, validation, and test datasets
Subsampling fraction for Dypin

brep Subsampling fraction per bootstrap replica

s Number of model replicas (ensemble size)

r Number of training epochs per replica

Tavg Number of epochs to fine-tune the averaged model
M; The 4-th model replica

Mayg Averaged model parameters across s replicas
Dhraing Initial subsampled training dataset

Dhrain; Subsampled dataset for the ¢-th replica

Deiy Bootstrapped dataset used in BLB training

1564

